Skip to main content

Mencari Cepat Rambat Cahaya - Bagian 2

Post bagian sebelumnya dapat dilihat di sini.

Misalkan terdapat bidang berbentuk persegi panjang $A$ sejajar sumbu z, dengan panjang $h$ dan lebar $dx$ pada sumbu x. Di sebelah kiri bidang $A$ terdapat medan magnet sebesar $B$, dan di sebelah kanan bidang $A$ terdapat medan magnet sebesar $B + dB$. Perubahan medan magnet tersebut menginduksi medan listrik $E$ yang mengarah ke sumbu y, tegak lurus bidang persegi panjang $A$.

Persamaan Maxwell untuk induksi medan listrik yaitu
$$\oint \vec{B} \cdot d\vec{s} = \mu_0 \varepsilon_0 \frac{\partial \Phi_E}{\partial t}$$
Mengaplikasikan persamaan tersebut untuk bidang $A$, diintegrasikan berlawanan jarum jam
\begin{align*}
\oint \vec{B} \cdot d\vec{s} &= -h(B+dB) + Bh \\
&= -h \, dB
\end{align*}
Fluks medan listrik terinduksi $\Phi_E$ yaitu
\begin{align*}
\Phi_E &= Eh \,dx \\
\frac{d\Phi_E}{dt} &= h \, dx \, \frac{dE}{dt}
\end{align*}
Substitusi ke persamaan Maxwell
\begin{align*}
-h \, dB &= \mu_0 \varepsilon_0 \left( h \, dx \, \frac{dE}{dt} \right) \\
-\frac{dB}{dx} &= \mu_0 \varepsilon_0 \frac{dE}{dt} \\
-\frac{\partial B}{\partial x} &= \mu_0 \varepsilon_0 \frac{\partial E}{\partial t}
\end{align*}
Melihat persamaan medan listrik dan persamaan medan magnet
\begin{align*}
\frac{\partial B}{\partial x} &= kB_m\,\cos(kx-\omega t) \\
\frac{\partial E}{\partial t} &= -\omega E_m\,\cos(kx-\omega t)
\end{align*}
Sehingga didapat
\begin{align*}
-kB_m\,\cos(kx-\omega t) &= -\mu_0 \varepsilon_0 \, \omega E_m\,\cos(kx-\omega t) \\
\frac{E_m}{B_m} &= \frac{k}{\omega \mu_0 \varepsilon_0}
\end{align*}
$\omega / k$ adalah cepat rambat gelombang elektromagnetik, yaitu sebesar $c$. Maka
$$\frac{E_m}{B_m} = \frac{1}{c \mu_0 \varepsilon_0}$$
Dari post sebelumnya juga didapat
$$\frac{E_m}{B_m} = c$$
Maka didapat
\begin{align*}
c &= \frac{1}{c \mu_0 \varepsilon_0} \\
c^2 &= \frac{1}{\mu_0 \varepsilon_0} \\
c &= \frac{1}{\sqrt{\mu_0 \varepsilon_0}}
\end{align*}
Nilai $\mu_0 = 4\pi \times 10^{-7}\, H/m$, dan $\varepsilon_0 = 8.85 \times 10^{-12} \,F/m$. Maka secara akurat didapat
$$c = 299 \, 792 \, 458 \,\, m/s$$

Popular posts from this blog

Venturimeter Dengan Manometer

Berdasarkan persamaan kontinuitas: \begin{align*} A_1v_1 &= A_2v_2 \\ v_2 &= \frac{A_1}{A_2} \, v_1 \end{align*} Menggunakan persamaan Bernoulli: $$P_1 + \frac{1}{2}\rho_u v_1^2 + \rho_u gh_1  = P_2 + \frac{1}{2}\rho_u v_2^2 + \rho_u gh_2$$ Ketinggian titik 1 dan 2 sama $h_1 = h_2) $ $$ P_1 + \frac{1}{2}\rho_u v_1^2 = P_2 + \frac{1}{2}\rho_u v_2^2 $$ Substitusi $ v_2 $ \begin{align*} P_1 + \frac{1}{2}\rho_u v_1^2 &= P_2 + \frac{1}{2}\rho_u \left(\frac{A_1}{A_2}\right)^2 v_1^2 \\ P_1 - P_2 &= \frac{1}{2}\rho_u v_1^2 \left[ \left(\frac{A_1}{A_2}\right)^2 - 1 \right] \end{align*} Perbedaan tekanan antara titik 1 dan 2 $ (P_1 - P_2) $ adalah sebesar perbedaan tekanan hidrostatik udara dengan tekanan hidrostatik fluida $ (\rho_f g \Delta h - \rho_u g \Delta h) $ \begin{align*} \rho_f g \Delta h - \rho_u g \Delta h &= \frac{1}{2}\rho_u v_1^2 \left[ \left(\frac{A_1}{A_2}\right)^2 - 1 \right] \\ (\rho_f  - \rho_u) g \Delta h...

Venturimeter Tanpa Manometer

Berdasarkan persamaan kontinuitas: \begin{align*} A_1v_1 &= A_2v_2 \\ v_2 &= \frac{A_1}{A_2} \, v_1 \end{align*} Menggunakan persamaan Bernoulli: $$P_1 + \frac{1}{2}\rho v_1^2 + \rho gh_1  = P_2 + \frac{1}{2}\rho v_2^2 + \rho gh_2 $$ Ketinggian titik 1 dan 2 sama $(h_1 = h_2) $ $$P_1 + \frac{1}{2}\rho v_1^2 = P_2 + \frac{1}{2}\rho v_2^2 $$ Substitusi $v_2 $ \begin{align*} P_1 + \frac{1}{2}\rho v_1^2 &= P_2 + \frac{1}{2}\rho \left(\frac{A_1}{A_2}\right)^2 v_1^2 \\ P_1 - P_2 &= \frac{1}{2}\rho v_1^2 \left[ \left(\frac{A_1}{A_2}\right)^2 - 1 \right] \end{align*} Perbedaan tekanan antara titik 1 dan 2 $ (P_1 - P_2) $ adalah sebesar perbedaan tekanan hidrostatik fluida $ (\rho g \Delta h) $ \begin{align*} \rho g \Delta h &= \frac{1}{2}\rho v_1^2 \left[ \left(\frac{A_1}{A_2}\right)^2 - 1 \right] \\ v_1 &= \sqrt{\frac{2g\Delta h}{\left( \frac{A_1}{A_2} \right)^2 -1}} \end{align*}

Induktor

Induktor adalah suatu alat yang mengubah energi listrik dalam bentuk medan magnet. Pada umumnya, induktor terdiri atas kumparan kawat konduktor dan diisi dengan bahan magnetik, seperti besi. Saat induktor dialiri arus listrik, arus yang melalui kumparan akan membentuk medan magnet. Medan magnet yang terbentuk ini berubah tiap waktu. Medan magnet tersebut akan membentuk GGL induksi yang melawan arah arus utama. GGL yang dihasilkan induktor sebesar $$V = -L\, \frac{di}{dt}$$ dengan $L$ induktansi induktor. Induktansi induktor adalah ukuran kekuatan induktor, yang didapat dari perbandingan antara fluks magnet yang dihasilkan dan arus yang melalui induktor. $$L = N \, \frac{\Phi_B}{i}$$ Fluks magnet yang terbentuk dalam induktor berbentuk kumparan lurus panjang yaitu \begin{align*} \Phi_B & = BA \\ &= \left( \mu_0 \mu_r\,\frac{iN}{\ell} \right) \left( \pi r^2 \right) \\ &= \mu_0 \mu_r\pi\,\frac{ir^2N}{\ell} \end{align*} sehingga didapat $$L = \mu_0 \mu_r\pi\,\frac{r^2...